In the Future, Machines Will Borrow Our Brain’s Best Tricks

Steve sits up and takes in the crisp new daylight pouring through the bedroom window. He looks down at his companion, still pretending to sleep. “Okay, Kiri, I’m up.”

She stirs out of bed and begins dressing. “You received 164 messages overnight. I answered all but one.”

In the bathroom, Steve stares at his disheveled self. “Fine, give it to me.”

“Your mother wants to know why you won’t get a real girlfriend.”

He bursts out laughing. “Anything else?”

“Your cholesterol is creeping up again. And there have been 15,712 attempts to hack my mind in the last hour.”

“Good grief! Can you identify the source?”

“It’s distributed. Mostly inducements to purchase a new RF oven. I’m shifting ciphers and restricting network traffic.”

“Okay. Let me know if you start hearing voices.” Steve pauses. “Any good deals?”

“One with remote control is in our price range. It has mostly good reviews.”

“You can buy it.”

Kiri smiles. “I’ll stay in bed and cook dinner with a thought.”

Steve goes to the car and takes his seat.

Car, a creature of habit, pulls out and heads to work without any prodding.

Leaning his head back, Steve watches the world go by. Screw the news. He’ll read it later.

Car deposits Steve in front of his office building and then searches for a parking spot.

Steve walks to the lounge, grabs a roll and some coffee. His coworkers drift in and chat for hours. They try to find some inspiration for a new movie script. AI-generated art is flawless in execution, even in depth of story, but somehow it doesn’t resonate well with humans, much as one generation’s music does not always appeal to the next. AIs simply don’t share the human condition.

But maybe they could if they experienced the world through a body. That’s the whole point of the experiment with Kiri.…

It’s sci-fi now, but by midcentury we could be living in Steve and Kiri’s world. Computing, after about 70 years, is at a momentous juncture. The old approaches, based on CMOS technology and the von Neumann architecture, are reaching their fundamental limits. Meanwhile, massive efforts around the world to understand the workings of the human brain are yielding new insights into one of the greatest scientific mysteries: the biological basis of human cognition.

The dream of a thinking machine—one like Kiri that reacts, plans, and reasons like a human—is as old as the computer age. In 1950, Alan Turing proposed to test whether machines can think, by comparing their conversation with that of humans. He predicted computers would pass his test by the year 2000. Computing pioneers such as John von ­Neumann also set out to imitate the brain. They had only the simplest notion of neurons, based on the work of neuro­scientist ­Santiago Ramón y Cajal and others in the late 1800s. And the dream proved elusive, full of false starts and blind alleys. Even now, we have little idea how the tangible brain gives rise to the intangible experience of conscious thought.

Today, building a better model of the brain is the goal of major government efforts such as the BRAIN Initiative in the United States and the Human Brain Project in Europe, joined by private efforts such as those of the Allen Institute for Brain Science, in Seattle. Collectively, these initiatives involve hundreds of researchers and billions of dollars.

With systematic data collection and rigorous insights into the brain, a new generation of computer pioneers hopes to create truly thinking machines.

If they succeed, they will transform the human condition, just as the Industrial Revolution did 200 years ago. For nearly all of human history, we had to grow our own food and make things by hand. The Industrial Revolution unleashed vast stores of energy, allowing us to build, farm, travel, and communicate on a whole new scale. The AI revolution will take us one enormous leap further, freeing us from the need to control every detail of operating the machines that underlie modern civilization. And as a consequence of copying the brain, we will come to understand ourselves in a deeper, truer light. Perhaps the first benefits will be in mental health, organizational behavior, or even international relations.

Such machines will also improve our health in general. Imagine a device, whether a robot or your cellphone, that keeps your medical records. Combining this personalized data with a sophisticated model of all the pathways that regulate the human body, it could simulate scenarios and recommend healthy behaviors or medical actions tailored to you. A human doctor can correlate only a few variables at once, but such an app could consider thousands. It would be more effective and more personal than any physician.